Calibration of Full-waveform Als Data Based on Robust Incidence Angle Estimation
نویسندگان
چکیده
Full-waveform airborne laser scanning data has shown its potential to enhance available segmentation and classification approaches through the additional information it can provide. However, this additional information is unable to directly provide a valid physical representation of surface features due to many variables affecting the backscattered energy during travel between the sensor and the target. Effectively, this delivers a mis-match between signals from overlapping flightlines. Therefore direct use of this information is not recommended without the adoption of a comprehensive radiometric calibration strategy that accounts for all these effects. This paper presents a practical and reliable radiometric calibration routine by accounting for all the variables affecting the backscattered energy, including the essential factor of angle of incidence. A new robust incidence angle estimation approach has been developed which has proven capable of delivering a reliable estimation for the scattering direction of the individual echoes. The routine was tested and validated both visually and statistically over various land cover types with simple and challenging surface trends. This proved the validity of this approach to deliver the optimal match between overlapping flightlines after calibration, particularly by adopting a parameter which accounts for the angle of incidence effect.
منابع مشابه
Radiometric Calibration of Full-waveform Airborne Laser Scanning Data Based on Natural Surfaces
Airborne laser scanning (ALS) has become a commercially available and therefore widely used technique for obtaining the geometric structure of the earth’s surface. For many ALS applications it is beneficial or even essential to classify the 3D point cloud into different categories (e.g. ground, vegetation, building). So far, most classification techniques use the geometry of the 3D point cloud ...
متن کاملPotential of the incidence angle effect on the radiometric calibration of full-waveform airborne laser scanning in urban areas
Full-waveform airborne laser scanning has shown potential to better describe land cover features through the additional physical information it can provide alongside the standard geometric information. To fully utilize full-waveform for enhanced object recognition and feature extraction, it is essential to calibrate the backscattered energy of the received signal. The backscatter signal is affe...
متن کاملRadiometric Calibration of Full-waveform Small-footprint Airborne Laser Scanners
Small-footprint airborne laser scanners (ALS) are lidar instruments originally developed for topographic mapping. In recent years ALS sensors are increasingly used also in other applications (forest mapping, building extraction, power line modelling, etc.) and their technical capabilities are steadily improving. While the first ALS systems only allowed determining the range from the sensor to t...
متن کاملA Robust SAR NLFM Waveform Selection Based on the Total Quality Assessment Techniques
Design, simulation and optimal selection of cosine-linear frequency modulation waveform (CNLFM) based on correlated ambiguity function (AF) method for the purpose of Synthetic Aperture Radar (SAR) is done in this article. The selected optimum CNLFM waveform in contribution with other waveforms are applied directly into a SAR image formation algorithm (IFA) and their quality effects performance ...
متن کاملAboveground Biomass Estimation of Individual Trees in a Coastal Planted Forest Using Full-Waveform Airborne Laser Scanning Data
The accurate estimation of individual tree level aboveground biomass (AGB) is critical for understanding the carbon cycle, detecting potential biofuels and managing forest ecosystems. In this study, we assessed the capability of the metrics of point clouds, extracted from the full-waveform Airborne Laser Scanning (ALS) data, and of composite waveforms, calculated based on a voxel-based approach...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011